If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2=298
We move all terms to the left:
2n^2-(298)=0
a = 2; b = 0; c = -298;
Δ = b2-4ac
Δ = 02-4·2·(-298)
Δ = 2384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2384}=\sqrt{16*149}=\sqrt{16}*\sqrt{149}=4\sqrt{149}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{149}}{2*2}=\frac{0-4\sqrt{149}}{4} =-\frac{4\sqrt{149}}{4} =-\sqrt{149} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{149}}{2*2}=\frac{0+4\sqrt{149}}{4} =\frac{4\sqrt{149}}{4} =\sqrt{149} $
| 298x2=6758 | | 7(x-2)=-7+7x | | 3b-21=-48 | | 2{x-3}+3=6x-5 | | 12y+3=1 | | y+3/12=1 | | Y=10x-8=8x-2 | | -6=1(c-4) | | -3(-2+4x)=90 | | 45+5/6x=15 | | 2x+6=14- | | x/3−4=9- | | 3w+17=16 | | 0.04x=600000 | | 4x=600000 | | -4(x-7)+5=-4x+37 | | 12x+21=75 | | −5/j+19=35 | | (48+(2x+5)+(180-(3x+23)))=180 | | 2c-18=2 | | −9=x/3−4 | | 7/2x+1/2x=13/1/2+9.2x | | 0.4x=600000 | | -10x+22=8x-14 | | 2k-k-45=180 | | 3(3x-1)=7x+5 | | 5x+11/6=-4 | | c/12-7=8 | | .4x-6=30 | | -2(2x)+9x=-80 | | x8+4=9 | | b/100-80=20 |